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Abstract Most models designed to understand how to manage infected wildlife systems
with bioeconomicmulti-stability take the initial conditions as given, thereby treatingpathogen
invasion as unanticipated.We examine how ex antemanagement is an opportunity to influence
the ex post conditions, which in turn affect the ex post optimal outcome. To capture these ex
antemanagement choices, we extend the Poisson “collapse” model of Reed and Heras (Bull
Math Biol 54:185–207, 1992) to allow for endogenous initial conditions and ex post multi-
stability. We account for two uncertain processes: the introduction and establishment of the
pathogen. Introduction is conditional on anthropogenic investments in prevention, and both
random processes are conditional on howwemanage the native population to provide natural
prevention of invasion and natural insurance against establishment placing the system in an
undesirable basin of attraction. We find that both multi-stability of the invaded system and
these uncertainty processes can create economic non-convexities that yieldmultiple candidate
solutions to the ex ante optimization problem. Additionally, we illustrate how the nature of

B David Finnoff
finnoff@uwyo.edu

Richard D. Horan
horan@msu.edu

Kevin Berry
kberry13@alaska.edu

Carson Reeling
carson.reeling@wmich.edu

Jason F. Shogren
jramses@uwyo.edu

1 Department of Agricultural, Food, and Resource Economics, Michigan State University, East
Lansing, MI, USA

2 Department of Economics and Finance, University of Wyoming, Laramie, WY, USA

3 Department of Economics and Public Policy, Institute of Social and Economic Research, University
of Alaska Anchorage, Anchorage, AK, USA

4 Department of Economics, Western Michigan University, Kalamazoo, MI, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10640-018-0227-y&domain=pdf


714 R. D. Horan et al.

natural protection against introduction and establishment risks can play an important role in
the allocation of anthropogenic investments.

Keywords Endogenous risk · Optimal control · Pathogen invasion

JEL Classification Q2 · Q57

1 Introduction

Wildlife vectors transmit infectious pathogens within and between species, posing significant
risks to both ecological and human health (see for example Daszak et al. 2000; Economist
2005; Jones et al. 2008).1 Managing these risks cost-effectively requires taking both an
ex ante and ex post perspective into consideration—the pre- and post-pathogen states of the
world—as these states are ecologically and economically linked (Perrings 2005; Finnoff et al.
2016). Indeed, it is well-established that the state of the non-invaded system typically plays
an important role for pathogen invasion success (Case 1990; Namba and Takahashi 1993;
Gilligan and van den Bosch 2008), particularly for at-risk wildlife populations (Daszak et al.
2000, 2001 and Lloyd-Smith et al. 2005). This means ex ante management affects the odds
and potential magnitude and economic consequences of invasion, with the ex ante incentives
for investing in protection depending on the expected management of the ex post system.
Public health agencies and organizations appear to recognize these linkages, as investing in
ex ante disease prevention has become a priority and a key element of the “One Health”
approach to disease management (e.g., CDC 2011; The World Bank 2013).

Yet most bioeconomic pathogen models have focused on the ex post state—optimal man-
agement given a pathogen has already been introduced into the system (e.g., Horan and
Wolf 2005; Fenichel and Horan 2007a, b; Horan and Melstrom 2011; Horan et al. 2011a, b).
This approach treats the ex post initial conditions as exogenous, implying that managers are
unable to take actions to affect the odds and potential magnitude of invasion.2 The limited
bioeconomic research on ex antemanagement (Horan and Fenichel 2007; also see Berry et al.
(2015) for a human disease application) considers the role of prevention efforts in reducing
the likelihood of an outbreak, but generally treats the initial conditions for any potential out-
break as exogenous. This is a concern given that multi-stability can arise in systems invaded
by harmful pathogens (Kremer 1996; Chakraborty et al. 2010; Chen et al. 2011), which

1 The focus of wildlife diseases has largely been on impacts to human and livestock health (e.g., Cleaveland
et al. 2001; Daszak et al. 2000; USDA-APHIS 2002; The Royal Society 2002), as most infectious diseases
affecting people and domestic animals originate in wildlife (Cleaveland et al. 2001)—including recent high-
profile disease outbreaks such as Ebola, coronaviruses (e.g.,MERS, SARS), prion diseases (bovine spongiform
encephalopathy (BSE) and variant Creutzfeldt-Jacob disease), avian influenza, bovine tuberculosis (bTB), and
West Nile Virus. Infectious diseases affect how ecological communities are structured and are a significant
factor in biodiversity declines (Hatcher et al. 2006; Smith et al. 2009a, b; MEA 2005), one of the greatest
environmental risks facing society (MEA 2005; Tschirhart 2009). It is predicted that pathogen introductions
may soon achieve a status similar to invasive species, the second most important cause of extinction (Daszak
et al. 2000).
2 Understanding how preventive choices (e.g., vaccination or population controls) might reduce the basic
reproduction ratio of pathogens (known as R0) below unity to prevent invasions has been a major emphasis
of the epidemiology literature (e.g., Roberts and Heesterbeek 2007).
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means the conditions of the system at the time of the outbreak might critically affect ex post
outcomes (Dasgupta and Mäler 2003; Brock and Starrett 2003).3

Finnoff et al. (2016) recently examined the optimal ex antemanagement of a native species
when this management affects the likelihood and magnitude of a potential non-native species
invasion. They showed how both the bioeconomic multi-stability of the invaded system
and uncertainty about the invasion can create economic non-convexities that yield multiple
candidate solutions to the ex ante optimization problem. In their model, the native species
acted as a form of natural insurance-cum-prevention: a larger stock of the native species had
the dual effect of reducing the likelihood of an invasion, and of increasing the likelihood that
any invasion would lead to the more desirable basin of attraction.

Our analysis examines themanagement of pathogen invasion risks to a nativewildlife pop-
ulation. This analysis is based on Finnoff et al.’s (2016) model, except that we introduce a key
difference in the nature of the endogenous risks. Specifically, the wildlife population does not
provide natural insurance-cum-prevention in the current setting. A larger wildlife stock does
provide natural insurance in our model. However, a larger and denser wildlife stock is subject
to greater invasion risks, at least for some densities. This means we have a compound proba-
bility problem inwhich thewildlife stock has opposing effects on the two forms of protection,
prevention and insurance (also see Finnoff et al. 2013 on compound lotteries in endogenous
risk models). This means the net effect of conservation on protection endogenously depends
on whether the natural insurance or natural prevention effect of natural capital dominates at
the current state. Moreover, investments in anthropogenic prevention and in natural capital
are complements for conveying prevention in our model, whereas they are always substitutes
in Finnoff et al.’s (2016) analysis. This has implications for the mix of controls.

As with Finnoff et al.’s (2016) analysis, we find that endogenous invasion risks and ex
post economic multi-stability can create ex ante multi-stability. However, the magnitudes
of the equilibrium wildlife stock levels relative to the risk-free case, and the incentives
for pursuing the various equilibria, differ in our model relative to Finnoff et al. (2016).
These differences stem from the different tradeoffs associatedwith anthropogenic and natural
prevention and insurance in the currentmodel. In our numerical example, the natural insurance
effect dominates the natural prevention effect.

2 The Model

Suppose a resource manager manages a stock of N wildlife to provide economically valuable
harvests. We assume the population resides in a fixed land area with a constant carrying
capacity, so that animal numbers are proportional to animal density. The population is at
risk from a potential invasion by a pathogen for which there is no vaccine. Ex post, the
number of infected animals is denoted I and the number of healthy but susceptible animals
is denoted S, with N = S + I . We assume for simplicity that introduction and establishment
of the pathogen, and the economic realization of these processes, occur simultaneously to
produce an invasion at some date T . Dividing time into the ex ante pre-invasion interval
t < T , and the ex post or post-invasion interval t ≥ T allows us to focus on how pre-
invasion decisions determine the initial conditions in the post-invasionmanagement problem.
Conversely, the distinction allows us to gain new intuition into ex ante populationmanagement
where managers benefit from considering the potential ex post impacts of ex ante decisions.

3 We use the term multi-stability to refer to bioeconomic multi-stability rather than the notion of ecological
multi-stability, which does not model human behavioral feedback responses.
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We begin by examining the ex post problem. Our discussion is facilitated by adopting a
specification analogous to that of Fenichel and Horan (2007b) for the special case of their
model with one control (harvests) and no disease-related damages outside the wildlife sector.

The ex post economic problem

Dynamics for the two sub-populations in the post-invasion setting (t ≥ T ) are given by

Ṡ = g (N , S) − τ (S, I ) − hS (1)

İ = f (N , I ) + τ (S, I ) − δ I − hI (2)

where S and I are the relevant states in the ex post setting, with the variable N simply
serving as a placeholder here to represent N = S+ I , and h is a harvest rate representing the
relevant control. The net growth relations g (·) and f (·) take the logistic form, g (N , S) =
αS (1 − N/K ) and f (N , I ) = α I (1 − N/K ), where α is the intrinsic growth rate and K
is the carrying capacity. The function f (N , I ) represents vertical transmission. Horizontal
disease transmission is given by τ(·), which takes on the standard, density-dependent form
τ (S, I ) = βSI (McCallum et al. 2001). The mortality rate due to infection is δ.

The harvest rate h serves as the control and is non-selective, as harvests are applied
uniformly across sub-populations. This is because we assume an animal’s infection status
is unknown when harvests occur. This assumption is reasonable for many diseases—many
infected animals do not exhibit outward signs of the disease until the later stages of infection
(Cleaveland et al. 2001).

Net benefits in each instant are given by [pS − c]h, where p is the marginal value of
harvests and c is a cost parameter such that [pS − c] is the net marginal value of a unit
of harvest. Although harvests are non-selective, we assume an animal’s infection status is
observable after it is killed, either due to testing or observable signs (e.g., lesions from
bovine tuberculosis) once the animal is cut open. Infected animals are less valuable than
healthy animals, and for simplicity we assume them to be worthless. This loss in value, along
with the loss of healthy animals due to disease transmission, represents the primary disease
costs in our model.

Given our specification, and assuming a discount rate of r , the present value of net benefits
(discounted to time T ) for the ex post problem are

V
(
ST , I T

)
= maxh

∫ ∞

T
= [pS − c] he−r(t−T )dt

s.t . Ṡ = g (N , S) − τ (S, I ) − hS

İ = f (N , I ) + τ (S, I ) − δ I − hI

0 ≤ h ≤ hmax , S (T ) = ST , I (T ) = I T (3)

where ST and I T are the initial states for the ex post system. Problem (3) is a linear control
problem. The solution follows from themaximum principle being applied to the current value
Hamiltonian Hex post = [pS − c] h+ηS Ṡ+ηI İ , where ηi is the co-state for state i ∈ {S, I }.
The singular solution is defined by the first order condition ∂Hex post

∂h = pS−c−ηS S−ηI I = 0

and the adjoint conditions η̇i = rηi − ∂Hex post

∂i for i ∈ {S, I }. A singular feedback rule h(S, I )
can be derived by time differentiating the singular first order condition twice and applying
the adjoint conditions and equations of motion. Alternatively, non-singular solutions may
arise when ∂Hex post

∂h �= 0: h = 0 is optimal when ∂Hex post

∂h < 0, and h = hmax (or an impulse

control, h → ∞, if hmax is not defined) is optimal when ∂Hex post

∂h > 0. These non-singular
solutions represent most rapid approach paths (MRAPs).
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We begin by focusing on the singular solution h(S, I ). The analytical solution for h(S, I )
is too complex to present or interpret here. Instead, we rely on a numerical example with the
parameter values p = 20, c = 400, r = 0.05, α = 0.25, K = 100, β = 0.005, and δ = 0.2.
This numerical example results in h(S, I ) being defined along the separatrices, or saddle
path, associated with a saddle point equilibrium. Specifically, the saddle path is defined as
a locus of points, or a trajectory, in the state space along which h(S, I ) is non-negative and
finite. Non-singular solutions are optimal for combinations of states not on the saddle path.
These results mean we need to examine the state space to analyze the solution.

Figure 1 presents the solution to the ex post problem as a feedback control diagram (Clark
2005), under the assumption that impulse controls are applied when ∂Hex post

∂h > 0. This
diagram illustrates areas of the state space where the controls are applied differently, with the
associated dynamics as indicated by the vector fields. The saddle path, S∗(I ), is the trajectory
to the saddle point equilibrium A.4 This path involves h(S, I ) > 0 along S∗(I ) except at the
intersection of S∗(I ) and Ŝ (I ) where h(S, I ) = 0. For initial conditions below S∗(I ) and to
the right of Ŝ (I ), ∂Hexpost

∂h < 0 and so h = 0 is optimal in this region.5 For initial conditions

above S∗(I ) and to the right of Ŝ (I ), ∂Hex post

∂h > 0 and so an impulse control is optimal in
this region. TheseMRAPs move the system to S∗(I ) as quickly as possible along a trajectory
indicated by the vectors in Fig. 1.

Trajectories that move to S∗(I ) along the curve Ŝ (I ) yield zero net benefits. Moreover,
only a sliver of the state space above S∗(I ) and to the right of Ŝ (I ) admit MRAPs that lead
to S∗(I ); the rest of the state space to the right of Ŝ (I ) is devoid of MRAPs to S∗(I ), which
means that a singular solution cannot be pursued in this region. The absence of a singular
solution in this region means there is no switching curve (i.e., ∂Hexpost

∂h = 0 is never satisfied

to the right of Ŝ (I )) and so ∂Hex post

∂h can only take on a single sign in this region: either
∂Hex post

∂h < 0 with h = 0 or else ∂Hex post

∂h > 0 with impulse harvests. The optimal solution in
this region involves setting h = 0, which yields no net benefits, as the alternative of impulse
harvests would produce negative net benefits. Natural processes (reproduction, natural and
disease mortality, and disease transmission) fully determine the dynamics, illustrated by
the vector field that is governed by the isoclines in this region. These dynamics result in
equilibrium B being a locally stable focus.

The fact that there are zero net benefits along and to the right of Ŝ (I ) means that Ŝ (I )
is a Skiba threshold representing indifference between two locally optimal strategies: (1) a
managed endemic disease with h ≥ 0 along a trajectory to equilibrium point A, and (2) an
unmanaged endemic disease with h = 0 along trajectory to equilibrium point B. We refer to
the basin of attraction for B as the undesirable or bad basin, as it yields no net benefits, and
we refer to the basin of attraction for A as the desirable or good basin.

4 The vector field near equilibrium A appears to contradict our assertion that A is a saddle point. However,
this apparent discrepancy is explained by recalling that Fig. 1 is a feedback control diagram and not a standard
phase plane. In a sense, the feedback control diagram splices together phase planes associated with the various
types of solutions. The singular solution, which includes point A, is only followed along the saddle path S∗(I )
and so this is the only portion of the singular solution’s phase plane that is depicted in Fig. 1. A MRAP is
pursued for state combinations lying off S∗(I ) and to the left of Ŝ(I ); here, the vector fields stem from the
phase planes associated with h = 0 (below S∗(I )) and impulse controls (above S∗(I )). We do not depict the
isoclines in this region in order to reduce clutter and to minimize potential confusion. However, the isoclines
associated with h = 0 would simply be extensions of the isoclines depicted to the right of Ŝ(I ).
5 Initial conditions refer to some initial combination of ST and I T in the state space. Combinations of ST

and I T along any line with slope of negative one are associated with a particular NT , due to the fact that
I T = NT − ST . That is, the isocline associated with a particular value of NT is given by a line that connects
the point ST = NT on the vertical axis with the point I T = NT on the horizontal axis.
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Fig. 1 Feedback control diagram illustrating ex post bioeconomic multi-stability

The expected present value of ex post net benefits given ex ante uncertainty about I T

The ex post results are used to analyze the ex ante problem. But there are two complications.
First, although NT can be predicted with certainty as the terminal value N (T ) = NT from
the deterministic ex ante problem, there is ex ante uncertainty about I T and hence ST , which
makes V

(
ST , I T

)
random. Second, calculating the expected value of V

(
ST , I T

)
requires

knowing the functional specification of V
(
ST , I T

)
, but the complexity of the problem pre-

vents us from obtaining an analytical solution for V
(
ST , I T

)
and then integrating over this

relation to obtain an expected value.
In the absence of an analytical solution, we adopted a numerical approach for calculating

the expected value of V
(
ST , I T

)
. The first step simplifies matters by recognizing that the

ex ante problem focuses on the deterministic variable N , and so we use the relation NT =
ST + I T to express V

(
ST , I T

)
equivalently as V

(
NT , I T

)
. This provides a direct link to

the ex ante scenario (via NT ) and allows us to focus on a single random variable, I T .
The second step simulates ex post results based on Fig. 1 to develop a data set involving

NT , I T , and V
(
NT , I T

)
. Specifically, we vary NT from 10 to 90 (which is just below the

carrying capacity K = 100) by increments of five. For each value of NT , we then vary I T

by increments of two. For each pair of values lying in the region above Ŝ (I ), we calculated
V

(
NT , I T

)
as the net present value of the sum of discounted net benefits from the MRAP

and the value of being on the singular trajectory. That is, V
(
NT , I T

) = Hexpost∗(NS ,I S
)

r +
MRAPvalue where Hexpost∗ (

NS, I S
)
is the optimized current value Hamiltonian at the

point the MRAP joins the singular approach path (at point
(
NS, I S

)
, which is determined
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by simulating the MRAP), and MRAPvalue = p
[
ST − SS

] − c ln
[
NT

N S

]
(see Conrad and

Clark 1987). In the region below Ŝ (I ), V
(
NT , I T

) = 0 since h = 0 in this region.
The third step specifies a conditional (on NT ) probability density function, denoted by

φ
(
I T ; NT

)
, for the random variable I T . Specifically, we adopt the truncated exponential

distribution φ
(
I T ; NT

) = λ(NT )e−λ(NT )I T

1−e−λ(NT )NT where λ(NT ) is a rate parameter and NT is the

maximum possible value of I T . Typically, λ and NT are treated as fixed parameters for
φ. However, since NT is endogenous in our ex ante model, with its value able to change
considerably, we calibrate λ to depend on NT such that the expected rate of initial infection
is increasing in the wildlife density (i.e., a larger value of I T is expected; evidence for such
a relation is provided by Gilligan and van den Bosch 2008). Note that the pdf φ does not
depend on prevention effort. Essentially, we are assuming that once an invasion occurs (the
likelihood of which is determined by a separate probability, described in the next section,
that does depend on prevention efforts), the level of establishment at the time of detection,
I T , depends solely on early interactions with the wildlife population.6

The pdf can be used to calculate the probability that the ex post system will begin in the
undesirable basin of attraction. The results are illustrated in Fig. 2a. For very small I T , any
infection is likely to infect a significant proportion of the stock (e.g., since even one infected
animal represents ten percent of the population when N = 10) and so there is a significant
probability (8%) of being in the undesirable basin. This probability initially declines in
NT but soon increases in NT as a larger NT provides more opportunities for early spread
(affecting our calibrated pdf φ). The maximum probability (twelve percent) occurs when
NT = 40. The probability then diminishes in NT for NT > 40, as the effect of NT on early
spread is dominated by the fact that larger stock sizes make it more economic for managers
to pursue equilibrium A in the good basin. We refer to the effect of a larger NT increasing the
likelihood of being in a bad basin as a natural hazard, and the effect of a larger NT reducing
the likelihood of being in the bad basin of attraction as natural insurance.

Given the pdf φ for uncertain I T in the ex post interval, the ex ante expected net benefits
associated with NT are given by

W
(
NT

)
=

∫ NT

0
V

(
NT , I

)
φ

(
NT ; I

)
d I. (4)

A rectangular interpolationwas used to generate a numerical approximation ofW
(
NT

)
for

each NT . Finally, the numerical approximationswere used to estimate the relationW
(
NT

) =
38.2NT −1.15

(
NT

)2+0.017
(
NT

)3−0.000079
(
NT

)4
usingOLS (model F-statistic=4768

6 Our model assumes the dates of introduction and detection are the same. However, we calibrate φ by
temporarily relaxing this assumption so that we may link the pdf φ to initial infection dynamics. Let I0 be

the initial introduction such that I T ≈ I 0 + İ
t , where 
t is a delay in detection. Define Q
(
NT

)
= İ

I0
=

(
β − α

k

)
NT + (α − δ), which is always positive given our parameter values. Then we approximate I T as

I T ≈ I 0
(
1 + Q

(
NT

)

t

)
≈ I 0Q

(
NT

)

t if Q

(
NT

)

t 
 1. The term Q(NT ) is determined by the

model parameters and the given value of c. We set I 0
t = 80, which implies 14 animals become infected

when N = 50. We calibrate λ
(
NT

)
so that this result lies in the upper tail of the distribution and that most

of the probability mass lies below this value (which seems more reasonable). Specifically, λ
(
NT

)
is chosen

such that I 0Q
(
NT

)

t = 1

λ
(
NT

)
(
1−e

−λ
(
NT

)
NT

) , which exceeds the mean of the truncated exponential

distribution.
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Fig. 2 a Probability that an invasion places the system in the undesirable basin of attraction. b Simulated

versus estimated values of W
(
NT

)

[p value=0]; each estimated coefficient is significantly different than zero with p values of
0), This specification assumes W (0) = 0, as there is no economic activity when there is no
resource to harvest. The interpolated and estimated values are shown in Fig. 2b illustrating the
goodness of fit and also thatW

(
NT

)
is not globally concave, Finnoff et al. (2016) discuss the

potential for a non-concave W
(
NT

)
, but they employ a hypothetical functional form rather

than specifying and solving an explicit ex post problem as we have done here.
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3 The ex ante Economic Problem

Having characterized ex post management and the expected value of this management,
we now discuss pre-invasion management for the interval t < T . Note that I = 0
during this interval, leaving N as the only state variable. We treat uncertainty about intro-
duction as uncertainty on the invasion date T (e.g., Reed and Heras 1992), with the
likelihood of introduction dependent upon wildlife density N and on prevention effort
z. Specifically, let the probability the pathogen is introduced at any time t be given by

rateψ (N , z) = lim

t→0

{
Pr(Pathogen invasion in(t,t+
t))|no invasion at t


t

}
. Prevention efforts include

measures to prevent infected livestock or pets from being imported into a region, or to prevent
migration of infected wildlife into the region. Prevention effort is a flow variable, such that
only current expenditures on prevention influence the probability of introduction, as might be
observed with a visual inspection program. We assume ψz (N , z) < 0 and ψzz (N , z) > 0,
with ψz (N , 0) = −∞ and ψz (N ,∞) = 0, such that diminishing returns to prevention
exist. Greater wildlife densities are assumed to lead to a greater chance of pathogen inva-
sion, ψN (N , z) > 0 (and also that ψNN (N , z) ≤ 0) since there are more opportunities for
one or more herd members to become infected by an outside source.7 This means a larger
wildlife stock naturally promotes an invasion, weakening prevention; alternatively, a smaller
N provides a form of natural prevention. This assumption is in contrast to the natural pre-
vention conveyed by a more abundant native species in Finnoff et al.’s (2016) analysis. The
probability the system evades introduction to time t is given by the survivor function

e− ∫ t
0 �(N (v),z(v))dv = e−y (5)

where y (t) = ∫ t
0 ψ (N (v) , z (v)) dv = � (N (t) , z (t)) is the integrated hazard and y(0) =

0, so that e−y(0) = 1.
The combination of ψ (N , z) and φ (N ) make this a compound probability problem: one

can manage prevention to reduce the chance of pathogen invasion, and one can manage the
ex ante stock to influence both the chance of invasion and the chance of being in the good
ex post basin of attraction should an invasion occur. Notice the ex ante and ex post tradeoffs
involving N : a larger N makes invasion more likely, but may also increase the likelihood of
moving into the good basin of attraction in the invaded system.

As all animals are healthy in the ex ante period t < T , the net benefits of harvesting
are given by phN – ch. Additionally, there is a cost associated with prevention effort. We
define the units of prevention effort in dollars such that z is the expenditure on prevention.
Net benefits in each period of the ex ante interval are given by phN−ch− z. Note that in the
absence of prevention, Nπ=0 = c/p is the zero profit threshold.

Denoting E as the expectations operator over the uncertain date T , optimal management
decisions in the ex ante period are defined as the solution to:

maxh,z E

{∫ T

0
[phN − ch − z] e−r t + e−rT W (N (T ))

}
(6)

7 Basic epidemiological theory indicates that pathogens can only invade a system if the basic reproduction
ratio of the pathogen, R0, exceeds one, and that R0 is increasing in host density when transmission exhibits
some degree of density-dependence (Anderson and May 1986). Empirical studies find that increased density
either increases disease risks in wildlife or else has no effect. Wildlife problems where disease risks likely
increase with density include bovine tuberculosis in New Zealand brushtailed possums (Caley et al. 1999) and
Michigan white-tailed deer (Hickling 2002; O’Brien et al. 2002), brucellosis in Yellowstone area elk (Cross
et al. 2013), cowpox in voles (Smith et al. 2009a, b), and chronic wasting in Wisconsin white-tailed deer (Joly
et al. 2006).
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subject to N (0), 0 ≤ h ≤ hmax , z ≥ 0, and the pre-invasion equation of motion

Ṅ = g (N ) − hN (7)

We employ the same growth function as in the ex post case, except note that S = N ex ante.
We can rewrite problem (6) (e.g., Reed and Heras 1992; Horan and Fenichel 2007;

Finnoff et al. 2016) as a deterministic, infinite horizon control problem in which SN B =∫ ∞
0 [phN − ch − z] e−r t−ydt is optimized subject to N (0), the control constraints, the equa-
tion of motion (8), the evolution of the integrated hazard ẏ = ψ (N , z), and y(0) = 0. The
deterministic problem involves an infinite time horizon since an invasionmay never occur, but
also utilizes a risk-adjusted discount factor to reflect the possibility of invasion. More details
on the optimization problem, including its interpretation and manipulations, are detailed in
Finnoff et al. (2016); here we only note the important details.

The conditional, current-value Hamiltonian (referred to as the Hamiltonian) is defined as

H = phN − ch − z + ψ (N , z)W (N ) + λ [g (N ) − hN ] − ρψ (N , z) (8)

where λ > 0 is the co-state for N and ρ is the co-state associated with −y. The Lagrangian
associated with (8) and the control constraints is

L = phN − ch − z − ψ (N , z) [ρ − W (N )] + λ [g (N ) − hN ] + μh minh

+μh max [
hmax − h

] + μz minz (9)

where μh min, μh max, μzmin ≥ 0 are the Lagrangian multipliers associated with the con-
straints h ≥ 0, h ≤ hmax , and z ≥ 0 respectively.

The non-convexities of the ex post problem (i.e., of W (N )) bleed through and affect the
concavity of H , which also critically depends on the relationship between z and N on the
hazard rate ψ (N , z), potentially compounded by changes in sign of the term ρ−W (Finnoff
et al. 2016). The implications are that both ex post non-convexities and the uncertainties
associatedwith the pathogen invasionmay separately or jointly create ex ante non-convexities
that generate multiple optimality candidates.

3.1 Optimality Conditions

The adjoint conditions for N and y are:8

λ̇ = [r + ψ (N , z) − gN (N ) + h] λ − ph − ψN [W (N ) − ρ] − ψ (N , z)WN (10)

ρ̇ = [r + ψ (N , z)] ρ − phN + ch + z − ψ (N , z)W (N ) (11)

Condition (10) is presented below in detail. Adjoint condition (11) has solution ρ (t) =∫ ∞
t [phN − ch − z + ψ (N , z)W (N )] e−r(s−t)−yds, which is the expected present value
of net benefits from the current time onwards, or the ex ante value of an optimally managed
system facing the threat of invasion. Given this result, we can interpret γ ≡ ρ −W as the net
economic cost of transitioning to the ex post outcome.

The optimality conditions related to harvesting are omitted as the only difference from the
corresponding ex post condition is that the user cost now involves a single term, λN (since
there is no disease). Instead, we focus our attention on prevention. The optimality condition
for prevention is

∂H

∂z
= −1 − ψz (N , z) γ + μz min = 0; zμz min = 0 (12)

8 The adjoint condition for y is based on the results of Reed and Heras (1992).
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An interior solution can only arise when γ > 0 such that transitioning to the ex post
outcome is costly: there is value associated with trying to help the natural system prevent an
invasion. The first order condition in this case requires investing in prevention to balance the
marginal cost of prevention with the expected marginal reduction in losses. A corner solution
with z = 0 is optimal if γ ≤ 0 such that there is value to letting the invasion occur.

Examining when γ > 0 or γ ≤ 0 begins by considering the case where z > 0. Then
condition (12) implies γ (N , z) = − 1

ψz(N ,z) > 0. The optimal value of z depends on whether
the solution for h is singular or non-singular. When h is singular, Finnoff et al. (2016) show

how the optimality conditions can be used to derive ρ = (pN−c)g(N )−z+ψ(N ,z)W (N )
r+ψ(N ,z) , which

can be rearranged into the following risk-adjusted “transversality condition” that balances ex
ante and ex post net benefits to determine the likelihood of T :

(pN − c) g (N ) − z − [r + ψ (N , z)] γ (N , z) = rW (N ) (13)

Specifically, condition (13) balances sustainable ex ante net benefits from harvesting, less
prevention costs and the risk-adjusted capital losses from invasion, with the expected flow
value accruing after the invasion. If investing in prevention is optimal, then both z and γ are
positive and the sustainable ex ante net benefits from harvesting outweigh the expected divi-
dends ex post, (pN − c)g(N ) > rW(N ). Some of the difference between (pN − c)g(N ) and
rW(N ) is reflected by the ex ante risk-adjusted capitalized losses, [r + ψ (N , z)] γ (N , z).
The residual is optimally invested in prevention. Condition (13) indicates the optimal invest-
ment level can be written as a feedback rule, which we denote z(N ). When z(N ) > 0, society
prefers activelymanaging to stay in the non-invaded status quowith risk of invasion, relative to
transitioning to a post-invasion outcome. Indifference occurs when (pN−c)g(N ) = rW(N ),
so that z(N ) = 0 and γ(N ) = −1/ψz(N , 0) → 0. A singular solution for h in which z = 0 is
optimal with μz min > 0 and γ(N ) < 0 is also possible. Condition (13) implies this case will
resultwhen (pN−c)g(N ) < rW(N ). Figure 2 illustrates the relation (pN−c)g(N ) = rW(N )

has two roots, Ñ H and Ñ L , definedby z(N ) = γ(N ) = 0. In particular,γ, z > 0 for N ∈ (Ñ L ,
Ñ H ), whereas γ < 0 and z = 0 for N ∈ [Ñ H , K ] (or for N ∈ [Nπ=0, Ñ L ], although this
case is less relevant in our numerical example).

To understand the relation between γ, z and N , recall the wildlife stock’s opposing effects
in the vicinity of Ñ H : a larger Nweakens prevention but provides natural insurance that
increases the likelihood of being in the good basin of attraction ex post. Note that sufficient
investments in natural insurance come at a cost of reduced sustainable harvests, g(N ), due
to g′(N ) < 0 for values of N > K/2, which is the maximum sustainable yield level (see
Fig. 3). Outcomes with γ > 0 are consistent with a small (or perhaps negative) investment
in natural insurance: there is a preference to maintain a relatively large flow of sustainable ex
ante harvest benefits, (pN − c)g(N ), in spite of the fact that the lack of natural insurance in
this case increases the chance of moving to the bad basin of attraction ex post, resulting in a
relatively small ex post flow of benefits, rW(N ). In this case, there is value in prevention to
reduce the likelihood of invasion. Someof this prevention already occurs as natural prevention
arising from a less dense population N , but there is additional value from further investments
in z.

Outcomes with γ < 0 are consistent with a larger investment in natural insurance: there
is a preference for insuring against moving to the bad basin of attraction ex post, resulting in
a relatively large ex post flow of benefits, rW(N ), in spite of the fact that natural insurance
reduces the flow of sustainable ex ante harvest benefits, (pN – c)g(N ). The relatively large
wildlife stock levels in this case means invasion will be likely without significant, costly
investments in prevention. However, the significant amount of insurance being conveyed in
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Fig. 3 Singular solutions for γ(N )

this casemeans that further investments in prevention are not worthwhile: society is willing to
forego doing anything more to prevent the invasion (z = 0) since enough costs have already
been incurred to make the ex post outcome relatively safe. This result differs markedly from
Finnoff et al. (2016). They found γ < 0 might arise when a native species is at sufficient
densities to act as a predator for the invader, so that the invader provides a valued ecosystem
service to the native species.

More insight into the tradeoffs between prevention and insurance is obtained by examining
the condition defining the singular solution for h. In a singular outcome, the necessary
condition for h, λ = p − c/N , can be time differentiated and set equal to λ̇ from adjoint
condition (10) to obtain the following modified golden rule for resource management, which
determines the singular value(s) of N :

r =

[
gN (N ) + pg (N )

pN − c

]

︸ ︷︷ ︸
RRF (N )

+

[−ψN (N , z (N )) γ (N , z)

pN − c
+ ψ (N , z (N )) [WN (N ) − (pN − c)]

pN − c

]

︸ ︷︷ ︸
RR (N )

(14)

Condition (14) equates the required rate of return, r , to the own rate of return to conserving
the wildlife stock (the right hand side [RHS], with all economic values normalized by the
marginal value of wildlife). The first RHS quantity in brackets comprises two terms: the
marginal growth of the wildlife stock plus the marginal cost savings from conservation.
These terms represent the own rate of return in standard resource models without disease
risks (Clark 2005), and so we denote RRF (N ) as the risk-free own rate of return. In standard
resource models, the golden rule condition r = RRF (N ) determines the risk-free singular
solution for N , which we denote here as N RF .

The second RHS quantity in brackets, denoted RR (N ), represents the own rate of return
due to the effect of conservation on managing invasion risks. The first term in RR (N ),
−ψN (N , z (N )) γ (N , z) < 0, reflects the cost of increasing the chance the ecosystem
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transitions. Specifically, this term is the (normalized) marginal effect of N on increasing
expected losses, holding γ fixed. Since ψN > 0, a more abundant managed stock increases
invasion risks, reducing RR (N ). This is opposite the effect described by Finnoff et al. (2016),
implying a smaller N is more likely in the present case, other things equal.

The second term in RR (N ) reflects natural insurance: the ability of the stock to lower
the expected losses that occur if the ecosystem becomes invaded. These losses arise here
as potential risks of reduced natural capital values at the date of invasion. If the invasion
date T was deterministic, then N (T ) would be chosen to satisfy the standard transversality
condition for N , λ (T ) = pNT − c = WN

(
NT

)
. This condition is unlikely to be satisfied,

however, when the invasion date T is random; the values pNT − c andWN
(
NT

)
will likely

deviate at each possible date for T . The expected difference, ψ (N ) [WN (N ) − (pN − c)],
is the expected marginal capital gain or loss from invasion. An efficiency gain occurs if
WN (N ) > pN − c when T occurs, increasing the return to N . The opposite occurs if
WN (N ) < pN − c at T . This means the net effect of conservation on expected losses
depends on ex post impacts relative to ex ante impacts. The net effect is more likely to be
positive when a larger N provides substantial natural insurance at the margin. This result is
analogous to that of Finnoff et al. (2016).

Manipulating condition (14) to

r − RRF (N ) = RR (N ) (15)

provides more intuition into the conservation of N . The condition balances the return from
managing disease risk (RHS) with the required return r net of the generated risk-free return
(the left hand side [LHS], the required net return to managing disease risk). If reduced
conservation protects against both risks or if the effect on prevention dominates, then both
sides of (15) are negative and the singular value of N is likely smaller than the risk-free value
N RF given standard assumptions about the terms in RRF (N ). The opposite may occur if
the natural insurance effect of conservation dominates.

We illustrate the ex ante model by extending the ex post numerical example to include
our estimated W (N ) and a hazard function that follows our assumptions, ψ(N , z) = 0.15+
0.01N − 0.07z0.5. Increases in N are risky, and so a reduction in N conveys protection in
a relative sense. In contrast, z conveys prevention in an absolute sense. Figure 4 plots the
LHS andRHS relations from condition 15) numerically. Curve r−RRF (N ) is monotonically
increasing and concave,with the risk-free singular stock level occurringwhere r−RRF (N ) =
0, at the point N RF . Curve RR (N ) reflects the non-singular solution z = 0 in the intervals
[Nπ=0, Ñ L ] and [Ñ H , K ] (dot-dashed line) and the singular solution z(N ) > 0 in the interval
[Ñ L , Ñ H ]. The non-monotonic curve RR (N ) intersects the r − RRF (N ) curve three times
to produce singular values of N , denoted NC∗, ND∗, and NE∗. These multiple equilibria
arise from ex ante non-convexities introduced by ex post non-convexities mixed with the
uncertainty of invasion. In particular, they stem from the competing risk-protection effects
of conservation at different wildlife densities.

Equilibria NC∗ and NE∗ are locally stable. This is because RR (N ) > r − RRF (N ) to the
left of NC∗ and NE∗, so that the return tomanaging disease risk exceeds the required net return
to managing disease risk, whereas the opposite is true to the right of NC∗ and NE∗. As NC∗
is unchanging over time, the singular harvest rate associated with this equilibrium is given
by the stationary harvest level hC∗NC∗ = g

(
NC∗). The values of z (

NC∗), ρ
(
NC∗), and

γ
(
NC∗) are also constant in the singular outcome. Analogous results arise for equilibrium

NE∗.
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Fig. 4 Multiple equilibria for N with and without prevention. Thick arrows indicate direction of movement
of N , dashed when z(N ) = 0 and solid when z(N ) > 0

Consider the smallest singular value, NC∗. At this value, the conservation-related return
to disease control is negative, i.e., RR (N ) < 0. This is because the population is too small
to support large ex post capital values relative to ex ante values, i.e., (pN − c) > WN (N ), in
part due to the risk of landing in the undesirable basin of attraction ex post being at its peak
(see Fig. 2b). The golden rule then requires the risk-free return to conservation to exceed the
discount rate such that the required return to disease control is negative, r − RRF (N ) < 0.
The result is a small singular wildlife stock NC∗ relative to the risk-free level N RF , which
is the opposite of Finnoff et al.’s (2016) result due to the opposite effect of N on prevention
in the current setting.

While the risk of invasion is smaller at NC∗ than at values of N > NC∗, any invasion
that does occur at NC∗ is more likely to lead to an ex post outcome in the undesirable basin
of attraction for equilibrium B in Fig. 1: expected losses ψγ would be large at NC∗ absent
investments in prevention. Figure 5a indicates the optimal response is to invest heavily in
prevention, such that z(N ) is essentially maximized at NC∗ and ψ(N , z(N )) is essentially
minimized at this point (Fig. 5b). This is in spite of the fact that the reduction in N relative to
the risk-free value already conveys some level of prevention. Together, these complementary
investments make ψ

(
NC∗, z

(
NC∗)) small such that invasion is unlikely at NC∗ relative to

higher stock levels. Finnoff et al. (2016) also find that ψ is minimized in the neighborhood
of the small-stock equilibrium, although in their model large investments in anthropogenic
prevention substituted for a relative lack of natural prevention at this equilibrium. These
resultsmean tradeoffs involving the two types of risks—invasion risks and the risk of alighting
in the undesirable basin of attraction—and the two types of natural protection against these
risks, can play an important role in the allocation of anthropogenic and natural investments.

Now consider the largest singular value, NE∗. The return to disease control, RR (N ) > 0,
is positive at this value due to a larger wildlife population protecting against capital losses,
i.e., WN (N ) > (pN – c). The golden rule then requires the risk-free return to conservation
to be positive, r − RRF (N ) > 0, and the singular wildlife stock NE∗ exceeds N RF . While
the risk of invasion is larger at NE∗ than at values of N < NE∗, any invasion that does occur
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Fig. 5 a Prevention z(N ) in the singular solutions, dashed when z(N ) = 0 and solid when z(N ) > 0. b
Endogenous Hazard Ψ (N , z(N )) in the singular solutions, dashed when z(N ) = 0 and solid when z(N ) > 0

at NE∗ is more likely to lead to an ex post outcome in the desirable basin of attraction for
equilibrium A in Fig. 1. Expected losses ψγ would be small at NE∗ due to a small γ

(
NE∗),

and so it is optimal to invest in no prevention (Fig. 5). The result is that ψ(N , (N ) = 0) is
large enough at this point (Fig. 5b) so that an invasion is quite likely.

The final equilibrium to consider is ND∗. This equilibrium is unstable since r − RRF (N )

cuts RR (N ) from below. This instability suggests that equilibrium NC∗ should be pursued
along a MRAP for values of N (0) < NS∗ and that equilibrium or NE∗ should be pursued
along a MRAP for values of N (0) > NS∗, where NS∗ is a Skiba point in the neighborhood
of the unstable equilibrium ND∗ (Spence and Starrett 1975). For simplicity, we constructed
Fig. 4 as if equilibrium ND∗ is the Skiba point, with arrows representing the MRAPs that
should be followed for initial values of N not at a singular outcome. The true Skiba point
will depend on the value of hmax (Spence and Starrett 1975).
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4 Conclusion

Managing the risks of wildlife diseases/pathogens involve investments in both prevention
(ex ante) and control (ex post). This reality implies that the transition from the pre-disease
state to the post-disease state is endogenous—the manager balances his or her investments in
prevention and control such that the initial conditions that define the post-disease world are
endogenous. Yet most economic models exploring how to manage wildlife risks take these
initial conditions as exogenous, which implies that the pathogen invasion is unanticipated.
This is a restrictive approach given managers have ex ante options to control the odds of
invasion. Herein we explore how ex ante management affects the ex post initial conditions
and the subsequentex post optimal outcome.

Following Finnoff et al. (2016), we extend Reed and Heras’s (1992) Poisson “collapse”
model to allow for endogenous risk associated with the initial conditions and ex post multi-
stability. In doing so, we capture two uncertain processes: introduction and establishment
of the pathogen (with establishment defined by a random infection level that serves as the
initial condition for the invaded system). Both random processes are conditional on how
the native population is managed, making these random impacts endogenous to economic
decisions. As with Finnoff et al. (2016), we find the combination of invasion risks and ex
post multi-stability can produce ex ante multi-stability.

In contrast to Finnoff et al. (2016), who model wildlife conservation as an investment in
both natural prevention (reducing the likelihood of invasion) and natural insurance (reducing
the economic consequences of an invasion), our problem is more nuanced because wildlife
conservation as an investment in natural insurance but a divestment in natural prevention.
These opposing effects of conservation have potentially important implications for the allo-
cation of natural versus anthropogenic prevention. For instance, one equilibrium stock is
lower than risk-free value, in contrast to Finnoff et al. (2016), because the smaller stock con-
veys natural prevention relative to larger stocks (i.e., the degree to which the stock facilitates
invasion is reduced). This effect might suggest less of a need for anthropogenic investments
in prevention. However, at this equilibrium the probability of alighting in the undesirable
basin of attraction ex post is at a high due to the small stock. This latter effect increases
the incentives to make additional anthropogenic investments in prevention, such that these
are maximized at this equilibrium. These results, which stems from tradeoffs involving nat-
ural protection and natural insurance, suggest a complementary relation between natural and
anthropogenic prevention and contrast with Finnoff et al.’s (2016) results that natural and
anthropogenic prevention exhibit a substitute relation. This means tradeoffs involving the
two types of risks, and the two types of natural protection against these risks, can play an
important role in the allocation of investments.
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